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T
HE G-H-inspired method strives to identify and then calculate minimal

distances for a group of geometric points with commonality in a more

rigid space, wherein harmonic variation occurs in inherently non-orthogonal

spaces. One way to model this type of variation and then explain its nature

would be high-dimensional decomposition, which evidently requires that data

be represented in a high-dimensional form such as vector of coordinates,

intensities, energy, or discrete/quantised G-H distances (geometric terms).

Figure 1 provides an example of that subtle point.

Depending on the circumstance, di�erent measurable attributes can be

added to the space, even a hybrid of them (e.g. shape and texture, so as

to reconstruct/recover the relationship between image intensity and the im-

age shape in 2- and 3-D). For synthesis of images belonging to a particular

class/subspace, e.g. a canonical form (bar embedding error), one requires

that the model should be speci�c and generic. Speci�c � for the fact that

it need preferably not be confused with similar images belonging to another

class, and generic � for the fact that it must span a su�ciently large cloud in

hyperspace in order to capture the variation of all images of the same class.

As opposed to models that build upon a texture of pixels1, the GMDS

approach largely discards the notion of geometry in the way the human eye

1The common computer vision approach of locating and segmenting image parts, e.g.
for partial similarity on a per-part basis with scoring, with or without weighting based on
statistical/topological/irregular/anatomical signi�cance � that which can more uniquely
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Figure 1: Crude visual example of how typical PCA and GMDS relate to
one another, approach-wise

perceives it; just as PCA/SVD facilitate the modeling of heat, quanti�able

recipe ingredients, strings of letters and just about any parameterisable and

measurable element, it should be possible to encode or at least translate a

given image into a set of properties of some signi�cant role; this is partic-

ularly attractive in 3-D, where the size of the given set can be vast � far

greater than the actual entropy of the set. Considerable reduction in size

can be achieved by considering distances between corresponding points or

geodesic distances between neighbouring points, whereupon the image can

be reconstructed by merely plugging in the modeled parameters and scaling

accordingly. In that respect, it is a pseudo-dimensionality reduction prob-

lem. The elasticity of observed objects is implicitly modeled by a collection

identify in image within a group or even externally, as belonging to one group of images
and not other groups.
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of metric measurements � measurements taken not in Euclidean space but

in a more inherent space, more robust to the external viewer (judging an

object from the outside and not relative to its neighbourhood (e.g. landmark

points in its vicinity). Intrinsic similarities are also more resistant to error

due to some topological changes in the sense that, assuming there is aware-

ness of the topological changes typically introduced (e.g. hand touches leg),

it should be possible to de�ne 'sanity' ranges within which the distances do

make sense or alternatively use di�usion distance, or intrinsic symmetry tests

for something like animals where preservation of this property is expected.

Euclidean distances are hardly enough for determining if two points/objects

are just close to one another or actually connected.

Isometric embedding is somewhat analogous to putting an image in a

reference frame from which to consistently sample parameters. As all com-

parisons are better o� done in a spatially-neutral reference (such as a sphere

onto which a more complex image is mapped/�attered), this method seems

to follow the same intuition as Davies et al. who �nd parameters to model

shape by (in 2- and 3-D) by mapping everything onto a sphere and then

applying kernel functions to move those around consistently, for PCA to au-

tomatically use the �best� points that encode a complex shape. When dealing

with modeling in this context it is typically used for segmentation, non-rigid

registration, and synthesis. The problem of recognition and automated clas-

si�cation (e.g. telling apart extrinsic and intrinsic di�erences) hardly arises

in this area.

In GMDS, numerical analysis and multidimensional scaling can be thought

of as an iterative, concurrent search for directions and axes that better dis-

tinguish between pairs (or groups) of shapes; the general optimiser optimises

over image parts and also over corresponding points, which relate to the for-

mer to an extent. When dealing with images in a metric space, the situation

is merely identical or at least analogous to how image registration problems

are solved, by embedment in a high-dimensional space, where the di�erence

3



between them is estimated as per the vector in the manifold (Euclidean,

shu�e distance, etc.), depending on the problem domain.

It ought to be possible to make the problems at hand complementary and

not just ,mere surrogates.
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