PDF version of this document

next up previous
: 4  Results : 3  Experiments : 3.2  Model Evaluation

3.3  Normalisation


\begin{displaymath}
S_{Total}=\frac{S}{S_{0}},\,\, G_{Total}=\frac{G}{G_{0}}\end{displaymath} (1)


\begin{displaymath}
S_{\sigma_{Total}}=\sqrt{\frac{S_{0}^{2}\sigma_{s}^{2}+S^{2}\sigma_{s0}^{2}}{S_{s0}^{4}}}\end{displaymath} (2)


\begin{displaymath}
G_{\sigma_{Total}}=\sqrt{\frac{G_{0}^{2}\sigma_{g}^{2}+G^{2}\sigma_{g0}^{2}}{G_{g0}^{4}}}\end{displaymath} (3)

where:

\includegraphics[%
scale=0.4]{EPS/Normalisation_Framework/normalisation_framework.eps}

Figure x: The framework of normalisation. Two sets of training data, one which is real and one which is synthesised are compared to model-generated examples.

\includegraphics[%
scale=0.23]{EPS/Normalisation_Brain/real_training_data_gen.eps}  \includegraphics[%
scale=0.23]{EPS/Normalisation_Brain/synthesised_training_data_gen.eps}

Figure x: Comparison between the Generalisation ability derived from an original data set and a pseudo training set, as function of the number of model examples.

\includegraphics[%
scale=0.25]{EPS/Normalisation_Brain/normalised_data_gen.eps}  \includegraphics[%
scale=0.25]{EPS/Normalisation_Brain/spec_normalised_corrected.eps}

Figure x: Normalised Generalisation ability and Specificity as a function of the number of model examples.


next up previous
: 4  Results : 3  Experiments : 3.2  Model Evaluation
Roy Schestowitz 平成17年6月23日