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Abstract

Generative models of appearance have been studied ex-
tensively as a basis for imageinterpretation by synthe-
sis. Typically, these models are statistical, learnt from
sets of training images. Different methods of representa-
tion and training have been proposed, but little attention
has been paid to evaluating the resulting models. We pro-
pose a method of evaluation that is independent of the form
of model, relying only on the generative property. The
evaluation is based on measures of modelspecificity and
model generalisation ability. These are calculated from
sets of distances between synthetic images generated by the
model and those in the training set. We have validated
the approach using Active Appearance Models (AAMs) of
face and brain images, showing that both measures worsen
monotonically as the models are progressively degraded.
Finally, we compare three distinct automatic methods of
constructing appearance models, and show that we can de-
tect significant differences between them.

1. Introduction

Interpretation by synthesis has become a popular ap-
proach to image interpretation, because it provides a sys-
tematic framework for applying rich knowledge of the prob-
lem domain. Active Appearance Models (AAMs) [1, 2] are
typical of this approach. There are two essential compo-
nents: a generative model of appearance, and a method for
searching the model space for the instance that best matches
a given target image. In this paper we concentrate on the
first of these.

Many generative models of appearance are statistical in
nature, derived from sets of training images. AAMs use
models that are linear in both shape and texture. Their
construction relies on finding a dense correspondence be-
tween images in the training set, which can be based on
manual annotation or on an automated approach (see be-
low). Other approaches to constructing appearance models
include methods based on non-linear manifolds in appear-
ance space [3] and kernel PCA [4]. In the remainder of

the paper we restrict our attention to AAMs, but the meth-
ods presented could be applied to any generative appearance
model.

There has been relatively little previous work on
model evaluation. One approach is to test a complete
interpretation-by-synthesis framework, providing an im-
plicit evaluation of the models themselves. This requires
access to ground truth, allowing interpretation errors to be
quantified [8, 1]. The most serious weakness of this ap-
proach is that it confounds the effects of model quality and
the behaviour of the search algorithm. The need for ground
truth data is also undesirable, because it is labour intensive
to provide and can introduce subjective error.

We propose a method for evaluating appearance models,
that uses just the training set and the model to be evaluated.
This builds on the work of Davies et al [6], who tackled the
simpler problem of evaluating shape models. Our approach
is to measure, directly, the similarity between the distribu-
tion of images generated by the model, and the distribution
of training images. We define two measures:specificity–
the overlap of the distribution of model-generated images
with the distribution of training images, andgeneralisation
ability – the overlap of the distribution of training images
with the distribution of model-generated images. We val-
idate the approach by generating progressively degraded
models, demonstrating that both specificity and generalisa-
tion also degrade, monotonically. We also apply the method
to a real model evaluation problem.

2. Background

2.1. Statistical Models of Appearance

Statistical models of shape and appearance (combined
appearance models) were introduced by Cootes, Edwards,
Lanitis and Taylor [1, 2], and have since been applied ex-
tensively (eg [14, 11, 10]). The construction of an appear-
ance model depends on establishing a dense correspondence
across a training set of images using a set of landmark points
marked consistently on each training image.

Using the notation of Cootes [2], the shape (configu-
ration of landmark points) can be represented as a vector

1
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x and the texture (intensity values) in a shape-normalised
frame represented as a vectorg.

The shape and texture are controlled by statistical models
of the form:

x = x + Psbs

g = g + Pgbg (1)

Wherebs are shape parameters,bg are texture parameters,
x andg are the mean shape and texture, andPs andPg are
the principal modes of shape and texture variation respec-
tively.
Since shape and texture are often correlated, this can be
taken into account in a combined statistical model of the
form:

x = x̄ + Qsc

g = ḡ + Qgc (2)

where the model parametersc control the shape and tex-
ture simultaneously andQs, Qg are matrices describing the
modes of variation derived from the training set. The effect
of varying one element ofc for a model built from a set of
face images is shown in Figure1.

2.2. The Correspondence Problem

A key step in building a combined appearance model is
that of establishing a dense correspondence across the set of
training images. In practice, this is often achieved by mark-
ing up the training set manually with a set of key landmarks
and interpolating between them. Recently there has been
considerable interest in automating this process. One ap-
proach is to use non-rigid registration methods, developed
for use in medical image analysis, to align the images by
optimising a measure of image similarity [14, 11]. An al-
ternative approach refines an initial estimate of correspon-
dence so as to code the training set of images as efficiently
as possible [5]. Twining et al have recently described an ap-
proach based on optimising the total description length of
the training set, using the model [16].

In section4.1we validate our approach to model evalua-
tion by deliberately perturbing the correspondences in mod-
els built using manual annotation to establish correspon-
dence. In section4.2 we use our method of evaluation to
compare models built using non-rigid registration [14, 11]
and the minimum description length groupwise registration
approach of Twining et al [16].

3. Appearance Model Evaluation

Our approach to model evaluation is based on measur-
ing, directly, key properties of the model. This approach is
based on the work of Davies et al [6], who defined speci-
ficity and generalisation ability for shape models. To be ef-
fective, a model needs the ability to generate a broad range

of examples of the class of images that have been modelled.
We refer to this asGeneralisationability. Although this
property is necessary , it is not sufficient. We also require
that the model can only generate examples that are consis-
tent with the class of images modelled. We refer to this as
Specificity. We define both of these measures by compar-
ing the distribution of training images and the distribution
of images generated using the model. An overview of the
approach is given in Figure2. Any image can be considered
as a point in a high-dimensional space (defined by it’s inten-
sity values). The training set forms a cloud of points in such
a space. If we sample from the model, we generate a second
cloud of points in this space. For an ideal model, the two
clouds are coincident. We defineGeneralisationandSpeci-
ficity in terms of the distance from each training image to
the nearest model-generated image, and the distance from
each model-generated image to the nearest training image
respectively. We discuss the choice of an appropriate dis-
tance metric in section3.3.

3.1. Generalisation

The Generalisation ability of a generative appearance
model measures the extent to which it is able to repre-
sent images of the modelled class both seen (in the train-
ing set) and unseen (not in the training set). A model
that comprehensively captures the variation in the modelled
class should generate a distribution of images that overlaps
the training distribution as completely as possible. This
means that, if we generate a large set of synthetic images,
{Iα : α = 1, . . . m}, from the model, each image in the
training set should be close to a synthetic image. Given
a measure,| · |, of the distance between images, we define
the GeneralisationG of a model and its standard error,σG,
as follows:

G =
1
n

n∑
i=1

min
α

|Ii − Iα|, (3)

σG =
SD(minα |Ii − Iα|)√

n− 1
, (4)

Figure 2. Hyperspace representation of the model evaluation ap-
proach.
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Figure 1. The effect of varying the first model parameter of a facial appearance model by±2.5 standard deviations.

whereIi is the ith training image,minα is the minimum
overα (the set ofsyntheticimages), and SD is standard de-
viation. That is, Generalisation is the average distance from
each training image to its nearest neighbour in the synthetic
image set. A good model exhibits a low value of Generalisa-
tion, indicating that the modelled class is well-represented
by the model.

3.2. Specificity

The Specificity of a generative appearance model mea-
sures the extent to which images generated by the model
are similar to those in the training set. A specific model
should generate a distribution of images that overlaps the
training distribution as completely as possible. If we
take a synthetic image set such as that defined previously,
{Iα : α = 1, . . . m}, each synthetic image should be close
to an image in the training set. We define the Specificity,S,
and its standard error,σS , as follows:

S =
1
m

m∑
α=1

min
i

|Ii − Iα|, (5)

σS =
SD(mini |Ii − Iα|)√

m− 1
. (6)

That is, Specificity is the average distance from each syn-
thetic image to the nearest training image. A good model
exhibits a low value of Specificity, indicating that it gener-
ates synthetic images, all of which are similar to those in
the training set.

3.3. Measuring Distances Between Images

The most straightforward way to measure the distance
between images is to evaluate the mean absolute difference
between them, or alternatively treat them as vectors by con-
catenating pixel/voxel values and take the Euclidean dis-
tance. Although this has the merit of simplicity, it does not
provide a very robust distance measurement. In the con-
text of model and image registration evaluation considered
here, these approaches result in measures of distance that in-
creases rapidly, even for quite small image misalignments.
Robustness can be enhanced by considering a ‘shuffle dis-
tance’, inspired by the ‘shuffle transform’ [15]. The idea is

to seek correspondence with a wider area around each pixel.
Instead of taking the mean absolute difference between ex-
actly corresponding pixels, we take each pixel in one image
in turn, and compute theminimumabsolute difference be-
tween it and pixels in ashuffle neighbourhoodof the exactly
corresponding pixel in the other image. This approach is
less sensitive to small misalignments, and provides a more
robust measure of image distance. The sensitivity to mis-
alignment is determined directly by the size and shape of
the shuffle neighbourhood. One obvious choice is a square
box around the corresponding pixel, but this is inherently
anisotropic. Instead, we consider a shuffle disc, of radiusr,
which contains all pixels within a distancer of the central
pixel.

Figure 3 shows examples of shuffle distance between
an original image and a misaligned version evaluation, for
varying values of the radiusr. The effect of the shuffle
neighbourhood radius on the sensitivity to misalignment
is obvious as the contribution to distance perceivably de-
creases in areas of limited misalignment, as we go from
r = 0 to r = 3.7 (roughly equivalent to a7 × 7 square
window).

4. Experimental Evaluation

We demonstrate the proposed to approach model eval-
uation in two stages. Firstly, a set of validation experi-
ments are performed in which the behaviour of specificity
and generalisation ability are observed for a deliberate and
controlled degradation of a set of appearance models. The
approach is then applied to the problem of choosing an opti-
mal non-rigid registration algorithm for automatic construc-
tion of appearance models.

Figure 3. Shuffle distance evaluation:Left: original image,Right:
warped image,Centre, from left to right: images showing con-
tributions to shuffle distance, forr = 0 (abs. diff.), 1.5, 2.1 & 3.7
respectively.
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4.1. Validation

The purpose of the validation experiment was to estab-
lish if our measures of Specificity and Generalisation were
able to detect a known model degradation. We also wished
to investigate the effect of varying shuffle radius. Exper-
iments were performed using two very different data sets.
The first consisted of equivalent 2D mid-brain T1-weighted
slices obtained from 3D MR scans of 36 subjects. In each of
the images, a fixed number (167) of landmark points were
positioned manually on key anatomical structures (cortical
surface, ventricles, caudate nucleus and lentiform nucleus),
and used to establish a ground-truth dense correspondence
over the entire set of images, using locally affine interpola-
tion. The second consisted of 68 frontal face images with
blacked out backgrounds (to avoid biasing the distance mea-
surements), with ground truth correspondence defined using
68 landmark points positioned consistently on the facial fea-
tures in each image.

Figure 4.Left: Model constructed from ground-truth annotation.
Centre and right: models constructed with increasingly degraded
registration. Variation of±2.5σ0 about the mean in first three
modes.

The first 3 modes of variation of the the face model built
using the ground-truth correspondence are shown in Fig-
ure4 (left). Keeping the shape vectors defined by the land-
mark locations fixed, smooth pseudo-random spatial warps,
based on biharmonic Clamped Plate Splines (CPS) were
then applied to the training images. The warps were con-
trolled by sets of 25 randomly placed knot-points, each dis-
placed in a random direction by a distance drawn from a
Gaussian distribution. The relationship between the mean
of the displacement distribution and the mean pixel dis-
placement for the whole image was carefully calibrated.
This allowed a controlled misregistration to be introduced
by changing the parameters of the displacement distribu-
tion.

By increasing the warp magnitude, successively increas-
ing mis-registration was achieved. The mis-registered train-
ing images were used to construct degraded versions of
the original model. Figure4 (centre and right) shows the
models obtained using progressively degraded training data.
Models degraded using a range of values of the mean pixel
displacement (from the correct registration) were evaluated
using the method described in section3. The image dis-
tances used were Euclidean distance (r = 0) and three dif-

Figure 5. Specificity and Generalisation of the three automatic
model construction approaches.

ferent values of shuffle radiusr = 1.5, 2.1 and3.7. In each
case,m = 1000 images were synthesised using the first
10 modes of the model, and Specificity and Generalisation
were then estimated.

Results for the brain data are shown in Figure6. Each
point represents the average of 10 random instantiations of
the perturbing warps. The results for the face data are sim-
ilar, and shown in7, but they are based on a single instan-
tiation of each warp, which results in more noisy data. As
expected, Specificity and Generalisation both degrade (in-
crease in value) as the mis-registration is progressively in-
creased. In most cases there is a monotonic relationship
between Specificity/Generalisation and model degradation,
but this is not the case when Euclidean distance is used.
Note that there is a measurable difference in both measures,
even for fairly small perturbations to the initial registration
(e.g. the model of Figure4 (center)).

4.2. Application to Model Evaluation

We used our new method to evaluate three different mod-
els built using an enlarged set of the brain data containing
104 affine aligned images. It has been shown previously
[14, 11] that an appearance model can be built by regis-
tering each image in a set (pairwise) to a reference image.
In [16] it was argued that a ’groupwise’ approach which
took proper account of the whole set of images might be ex-
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Figure 6. Specificity and Generalisation of degraded brain models.

Figure 7. Specificity and Generalisation (with error bars) of degraded face models.

pected to perform better. We built three models, one using
the pairwise approach, and two variants of our groupwise
approach. The results, including the effect of including dif-
ferent numbers of modes in the models, are shown in Figure
5 and demonstrate a clear advantage in terms of both Speci-
ficity and Generalisation for both groupwise methods over
the pairwise approach. It was not possible to discriminate
between the two groupwise methods.

5. Summary and Conclusions

We have introduced an objective method of assessing
appearance models, that depends only on the model to
be tested and the training data from which it was gener-
ated. Validation experiments, based on perturbing corre-

spondences obtained using ground truth, show that, using
specificity in particular, we are able to detect small changes
in model quality (due to sub-pixel displacments) reliably
over a wide range of misregistration values. The results
obtained for different sizes of shuffle neighbourhood show
that the use of shuffle distance rather than Euclidean dis-
tance ensures monotonicity and increases the sensitivity of
the method. We have also shown that the approach is capa-
ble of detecting statistically significant differences between
models based on different approaches to automated model
building. We believe that this work makes a valuable con-
tribution, by providing an objective basis for comparing dif-
ferent methods of constructing generative models of appear-
ance.
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