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Evaluating Non-Rigid Registration without
Ground Truth

Roy S. Schestowitz, Carole J. Twining, Vladimir S. Petrović, Timothy F. Cootes, William R. Crum,
and Christopher J. Taylor

Abstract— We present a generic method for assessing the
quality of non-rigid registration (NRR), that does not require
ground truth, but rather depends solely on the registered images.
We consider the case where NRR is applied to aset of images,
providing a dense correspondence between images. Given this
correspondence, it is possible to build a generative statistical
model of appearance variation for the set. We observe that the
quality of the resulting model will depend on the quality of
the correspondence. We define measures of modelspecificityand
generalisationthat can be used to assess the quality of the model
and, hence, the quality of the correspondence from which it is
derived. The approach does not depend on the specifics of the
registration algorithm or the form of the model. We validate
the approach by measuring the change in model quality, as the
correspondence of an initially registered set of MR images of the
brain is progressively perturbed, and compare the results with
those obtained using a method based on the overlap of ground-
truth anatomical labels. We demonstrate that, not only is the
proposed approach capable of assessing NRR reliably without
ground truth, but that it also provides a more sensitive measure
of misregistration than the overlap-based approach. Finally we
apply the new method to compare the performance of repeated
pairwise and fully groupwise registration of MR images of the
brain.

I. I NTRODUCTION

NON-RIGID registration (NRR) of both pairs and groups
of images is used widely as a basis for medical im-

age analysis. Applications include structural analysis, atlas
matching and change analysis [1]. The problem is highly
under-constrained and many different algorithms have been
proposed.

The aim of non-rigid registration is to find automatically a
meaningful, dense correspondence between a pair (pairwise
registration), or across a group (groupwise registration) of
images. A typical algorithm consists of a representation of the
deformation fields that encode the spatial variation between
images, an objective function that quantifies the degree of
misregistration, and a method of optimising the objective
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function. As different algorithms tend to produce different
results when applied to the same set of images [2], there is a
need for methods to evaluate the results of NRR.

Various methods of evaluation have been proposed [3],
[4], [6], [7]. One approach is to construct artificial test data,
applying known deformations to real or synthetic images.
This allows algorithms to be evaluated by attempting to
recover the applied deformations, but does not allow the
results of NRR to be assessed ’in-line’ in real applications.
An alternative approach is to provide anatomical ground truth
for the images to be registered, then measure the degree of
anatomical correspondence following NRR. We have used one
such method in this paper as a ’gold standard’, but the need
for expert annotation of the images renders the approach too
time-consuming and subjective for routine application. These
problems motivate the search for a method of evaluation that
can be used routinely in real applications, without the need
for ground truth.

The approach we have adopted is based on the observation
that, given a set of non-rigidly registered images – however
obtained – it is possible to construct a statistical model of
appearance that takes account of both the shape and texture
variation across the set. Models of this type have been used
extensively as a basis for image interpretation by synthesis [9],
[10]. We build models by exploiting the dense correspondence
across the set of images established by the NRR. The key idea
that underpins our approach is that, if the correspondence is
poor, the resulting appearance model will be unsatisfactory.
This observation allows us to transform the problem of eval-
uating non-rigid registration into one of evaluating the model
generated from the result of registration.

The structure of the paper is as follows. We first provide
a brief description of the background to both the assessment
of registration, and the construction of appearance models,
explaining in more detail the link between the two. We then
define two quantitative measures of model (and thus registra-
tion) quality, and discuss their implementation. The behavior
of these measures is investigated by measuring the effect of
deliberately perturbing the registration of an initially registered
set of images The results are compared to those obtained using
a ’gold standard’ method of assessment, based on measuring
the overlap of manually annotated ground truth. The results
demonstrate that our new measures are closely correlated with
those based on ground-truth, and that the proposed approach
is actually more sensitive to misregistration. Finally, we use
the measures we have developed to compare various NRR
algorithms applied to the registration of sets of 2D MR
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brain images, demonstrating the superiority of fully groupwise
registration over a repeated pairwise approach.

II. BACKGROUND

A. Non-Rigid Registration

The aim of non-rigid registration is to find an anatomically
meaningful, dense (i.e., pixel-to-pixel or voxel-to-voxel) cor-
respondence across a set of images. This correspondence is
typically encoded as a set of spatial deformation fields, one for
each image, such that when the deformations are applied to the
images, corresponding structures are brought into alignment.

A typical registration algorithm proceeds by optimising
some objective function that depends on the similarity of the
images after alignment, with respect to the set of deformations.
As well as the objective function, it is necessary to define
the representation used for the deformation fields and the
method for finding the optimum of the objective function.
Different choices lead to different registration results, and thus
competing methods of NRR – hence the need for an objective
and easily applied method of assessment.

B. Evaluation of NRR

Two main approaches to assessing the accuracy of NRR
algorithms have been described previously – one based on
the recovery of known deformation fields, the other based
on measuring the overlap of ground-truth annotations after
registration. Both approaches are valid, but neither is easy to
apply routinely, and both are better suited to off-line evaluation
of algorithms, rather thanin-line evaluation of the results of
NRR in practical applications.

1) Recovery of Deformation Fields:One obvious way to
test the performance of a registration algorithm is to apply
it to someartificial data where the correct correspondence is
known. Such test data is typically constructed by applying
sets of known deformations (either spatial or textural) to
real images. This artificially-deformed data is then registered,
and evaluation is based on comparing the deformation fields
recovered by the registration algorithm with those that were
originally applied [6], [7]. This approach can be used to
compare the performance of different NRR algorithms, but
since it relies on the creation of artificial test data, cannot be
applied in-line. Also, the validity of the approach depends on
the ability to construct artificial deformations which mimic
the variability found in real images of a given type, which is
difficult to guarantee.

2) Overlap-Based Methods:An alternative approach is
based on measuring the alignment [3], [4], or overlap [4], [6]
of anatomical structures annotated by an expert, or obtained as
a result of (semi-)automated segmentation. Manual annotation
is expensive to obtain and prone to subjective error. Reliable
automated or semi-automated segmentation is extremely dif-
ficult to achieve – indeed if it was available it would often
obviate the need for NRR.

We have used an overlap-based approach to provide a ’gold
standard’ method of assessment. The method requires manual
annotation of each image – providing an anatomical/tissue

label for each voxel – and measures the overlap of corre-
sponding labels following registration, using a generalisation
of Tanimoto’s overlap coefficient. Each label for a given image
is represented using a binary image but, after warping and
interpolation into a common reference frame based on the
results of NRR, we obtain a set of fuzzy label images. These
are combined in a generalised overlap score [8] which provides
a single figure of merit aggregated over all labels and all
images in the set:

O =

∑
pairs,k

∑
labels,l

αl

∑
voxels,i

MIN(Akli, Bkli)∑
pairs,k

∑
labels,l

αl

∑
voxels,i

MAX(Akli, Bkli)
(1)

wherei indexes voxels in the registered images,l indexes the
labels andk indexes image pairs (all permutations are con-
sidered).Akli andBkli represent voxel label values for a pair
of registered images and are in the range[0, 1]. The MIN()
andMAX() operators are standard results for the intersection
and union of fuzzy sets. This generalised overlap measures the
consistency with which each set of labels partitions the image
volume.

The parameterαl affects the relative weighting of different
labels. Withαl = 1, label contributions are implicitly volume-
weighted with respect to one another. This means that large
structures contribute more to the overall measure. We have also
considered the cases whereαl weights labels by the inverse of
their volume (which makes the relative weighting of different
labels equal), whereαl weights labels by the inverse of their
volume squared (which gives regions of smaller volume higher
weighting), and whereαl weights labels by their complexity,
which we define as the mean absolute voxel intensity gradient
over the labelled region.

An overlap score based on a generalisation of the popular
Dice Similarity Coefficient (DSC) would also be possible
but, since DSC is related monotonically to the Tanimoto
Coefficient (TC) by DSC = 2TC/(TC+1) [5] we have not
considered this further.

C. Statistical Models of Appearance

Our approach to ground-truth-free evaluation of NRR de-
pends on the ability, given a set of registered images, to
construct a generative statistical model of appearance. We have
adopted the approach of Cootes et al [9], [10], who introduced
models that capture variation in both shape and texture (in the
graphics sense). These have been used extensively in medical
image analysis in, for example, brain morphometry and cardiac
time-series analysis [11]–[13]. Other approaches to appearance
modelling could also be considered – we rely only on the
generative property in this application

The key requirement in building an appearance model from
a set of images, is the existence of a dense correspondence
across the set. This is often defined by interpolating between
the correspondences of a limited number of user-defined
landmarks. Shape variation is then represented in terms of the
motions of these sets of landmark points. Using the notation of
Cootes et al [9], the shape (configuration of landmark points)
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Fig. 1. The effect of varying the first (top row), second, and third model
parameters of a brain appearance model by±2.5 standard deviations

of a single example can be represented as a vectorx formed
by concatenating the coordinates of the positions of all the
landmark points for that example. The texture is represented
by a vectorg, formed by concatenating the image values for
the shape-free texture sampled from the image.

In the simplest case, we model the variation of shape and
texture in terms of multivariate gaussian distributions, using
Principal Component Analysis (PCA) [15], obtaining linear
statistical models of the form:

x = x + Psbs

g = g + Pgbg (2)

wherebs are shape parameters,bg are texture parameters,x
andg are the mean shape and texture, andPs andPg are the
principal modes of shape and texture variation respectively.

In generative mode, the input shape (bs) and texture (bg)
parameters can be varied continuously, allowing the generation
of sets of images whose statistical distribution matches that of
the training set.

In many cases, the variations of shape and texture are
correlated. If this correlation is taken into account, we then
obtain a combined statistical model of the more general form:

x = x̄ + Qsc

g = ḡ + Qgc (3)

where the model parametersc control both shape and texture,
and Qs, Qg are matrices describing the general modes of
variation derived from the training set. The effect of varying
different elements ofc for a model built from a set of 2D MR
brain images is shown in Figure 1.

Generally, we wish to distinguish between the meaningful
shape variation of the objects under consideration, and the
apparent variation in shape that is due to the positioning of
the object within the image (the pose of the imaged object). In

this case, the appearance model is generated from an (affinely)
aligned set of images. Point positionsxim in the original
image frame are then obtained by applying the relevant pose
transformationTt(·):

xim = Tt(xmodel) (4)

wherexmodel are the points in the model frame, andt are the
pose parameters. For example, in 2D,Tt could be a similarity
transform with four parameters describing the translation,
rotation and scale of the object.

In an analogous manner, we can also normalise the image
set with respect to the mean image intensities and image
variance,

gim = Tgtrans(gmodel), (5)

where Tgtrans consists of a shift and scaling of the image
intensities. For further implementation details see [9], [10].

As noted above, a meaningful dense groupwise corre-
spondence is required before an appearance model can be
built. NRR provides a natural method of obtaining such a
correspondence, as noted by Frangi and Rueckert [11], [12].
It is this link that forms the basis of our new approach to NRR
evaluation.

The link between registration and modelling is further
exploited in the Minimum Description Length (MDL) [16]
approach to groupwise NRR, where modelling becomes an
integral part of the registration process. This is of one of the
registration strategies evaluated later in the paper.

III. M ODEL-BASED EVALUATION OF NRR

In the previous section, we described how the results of
NRR can be used to build a generative statistical model of
image appearance. In this section, we present our method for
quantitatively assessing the quality of the model built from the
registered data and, hence, the quality of the NRR from which
the model was derived. We introduce several variants of the
approach, with the aim of finding one which is both robust
and sensitive to small misregistrations.

A. Specificity and Generalisation

A good model of a set of training data should possess
several properties. Firstly, the model should be able to ex-
trapolate and interpolate effectively from the training data, to
produce a range of images from the same general class as
those seen in the training set. We will call thisgeneralisation
ability. Conversely, the model should not produce images
which cannot be considered as valid examples of the class of
object imaged. That is, a model built from brain images should
only generate images which could be considered as valid
images of possible brains. We will call this thespecificityof the
model. In previous work, quantitative measures ofspecificity
and generalisationwere used to evaluate shape models [17].
We present here the extension of these ideas to images (as
opposed to shapes). Figure 2 provides an overview of the
approach.

Consider first the training data for the model, that is, the
set of images which were the input to NRR. Without loss of
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Fig. 2. The model evaluation framework: A model is constructed from the
training set and then used to generate synthetic images. The training set and
the set generated by the model can be viewed as clouds of points in image
space.

generality, each training image can be considered as a single
point in ann-dimensional image space. A statistical model is
then a probability density functionp(z) defined on this space.

To be specific, let{Ii : i = 1, . . . N} denote theN images
of the training set when considered as points in image space.
Let p(z) be the probability density function of the model. We
define a quantitative measure of thespecificityS of the model
with respect to the training setI = {Ii} as follows:

Sλ(I; p) .=
∫

p(z)mini (|z− Ii|)λ
dz, (6)

where| · | is a distance on image space, raised to some positive
power λ. That is, for each pointz on image space, we find
the nearest-neighbour to this point in the training set, and sum
the powers of the nearest-neighbour distances, weighted by the
pdf p(z). Greater specificity is indicated bysmallervalues of
S, and vice versa. In Figure 3, we give diagrammatic examples
of models with varying specificity.

The integral in equation 6 is approximated using a Monte-
Carlo method. A large random set of images{Iµ : µ =
1, . . .M} is generated, having the same distribution as the
model pdfp(z). The estimate of the specificity (6) is:

Sλ(I; p) ≈ 1
M

M∑
µ=1

mini (|Ii − Iµ|)λ
, (7)

with standard error:

σS =
SDµ

{
mini{|Ii − Iµ|λ}

}
√
M− 1

, (8)

whereSDµ is the standard deviation of the set ofµ measure-
ments.

A measure of generalisation is defined similarly:

Gλ(I; p) .=
1
N

N∑
i=1

minµ (|Ii − Iµ|)λ
, (9)

with standard error:

σG =
SDi

{
minµ{|Ii − Iµ|λ}

}
√
N − 1

. (10)

Fig. 3. Training set (points) and model pdf (shading) in image space.Left:
A model which is specific, but not general.Right: A model which is general,
but not specific.

That is, for each member of the training setIi, we compute
the distance to the nearest-neighbour in the sample set{Iµ}.
Large values ofG correspond to model distributions which
do not cover the training set and have poor generalisation
ability, whereas small values ofG indicate models with better
generalisation ability.

We note here that both measures can be further extended,
by considering the sum of distances to k-nearest-neighbours,
rather than just to the single nearest-neighbour. However, the
choice of k would require careful consideration and in what
follows, we restrict ourselves to the single nearest-neighbour
case.

B. Measuring Image Separation

The definitions we have provided for specificity and gen-
eralisation require a measure of separation in image space.
The most straightforward way to measure the distance between
images is to treat each image as a vector formed by concate-
nating the pixel/voxel intensity values, then take the Euclidean
distance. This means that each pixel/voxel in one image is
compared against its spatially corresponding pixel/voxel in
another image. Although this has the merit of simplicity, it
does not provide a very well-behaved distance measure since
it increases rapidly for quite small image misalignments [18].
This observation led us to consider an alternative distance
measure, based on the ’shuffle difference’, inspired by the
’shuffle transform’ [19]. If we have two imagesI1(x) and
I2(x), then the shuffle distance between them is defined as

Ds(I1, I2) =
1
n

∑
x

mini‖I1(x)− I2(Ni(x))‖ (11)

where‖ · ‖ is the absolute difference, there aren pixels (or
voxels) indexed byx, and{Ni(x)} is the set of pixels in a
neighbourhood of radiusr aroundx.

The idea is illustrated in Figure 5. Instead of taking the
sum-of-squared-differences between corresponding pixels, the
minimum absolute difference between each pixel in one image
and the values in a neighbourhood around the corresponding
pixel is used. This is less sensitive to small misalignments, and
provides a better-behaved distance measure. The tolerance for
misalignment is dependent on the size of the neighbourhood
(r), as is illustrated in Figure 4.
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Fig. 4. A comparison between shuffle distance using varying size neighbourhoods (radiusr). Left: original image,right: warped image,centre, from the
left: shuffle distance withr = 1(Euclidean),1.5, 2.9 and3.7 pixels.

Fig. 5. The calculation of a shuffle difference image

It should be noted that the shuffle distance as defined above
depends on the direction in which it is measured (see Figure 6),
hence is not a true distance. It is trivial to construct a sym-
metric shuffle distance, by averaging the distance calculated
both ways between a pair of images. However, it was found
that the improvement obtained using this was not significant,
and did not justify the increased computation time. In what
follows, we use the asymmetric shuffle distance.

IV. EXPERIMENTAL VALIDATION

In this section, we discuss the design of experiments to
investigate the behaviour of different methods of evaluating
NRR. The main idea is that progressive misregistration of
initially registered datasets should result in monotonically
increasing values of specificity and generalisation (decreasing
performance). We also derive a measure of sensitivity to
misregistration that can be used to compare methods of NRR
evaluation.

A. Brain Dataset with Ground Truth

Our initial dataset consisted ofN = 36 transaxial mid-brain
2D slices, extracted at equivalent levels from a set of T1-
weighted 3D MR scans of normal subjects. The ground-truth
data for this set consists of dense (pixel by pixel) binary tissue
labels for the gray and white matter, the caudate nucleus tissue
classes and CSF within the lateral ventricles. These labels were
further divided into left and right. An example image and its
labelling is shown in Figure 7.

The training set was non-rigidly registered using a Mini-
mum Description Length (MDL) NRR algorithm [16]. This
registration was used as the starting point for the evaluation.

Fig. 6. Examples of the shuffle difference image: from one image to a second
image (left), from the second image to the first (centre), and the symmetrical
shuffle distance image (right)

Fig. 7. An example affinely-aligned brain image and its accompanying
anatomical labels, both overlaid and expanded, for gray matter, white matter,
the lateral ventricles, and the caudate nucleus. Labels are also divided into
left and right.

B. Perturbing the Registration

A test set of different registrations was created by applying
smooth pseudo-random spatial warps (based on biharmonic
Clamped Plate Splines [20]) to each image in the registered
set. Each warp was controlled by 25 randomly placed knot-
points, each displaced in a random direction by a distance
drawn from a Gaussian distribution whose mean controlled
the average magnitude of pixel displacement over the whole
image. Example images from the test set are shown in Fig-
ure 8. Ten different warp instantiations were generated for each
image and for each of seven progressively increasing values
of average pixel displacement.

The correspondence from the initial registration was applied
to the deformedimages resulting in a controlled degree of
misregistration. The correspondence becomes progressively
worse as the degree of image deformation increases.
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Fig. 8. Examples registration degradation through image deformation for
increasing scales of smooth CPS warps. Mean pixel displacement for each
image is shown.

C. Measuring Sensitivity

As well as being consistent with ground truth, a good
measure of registration quality should also exhibit good sensi-
tivity (measurement accuracy). That is, it should enable us to
detect small misregistrations. By evaluating sensitivity we can
also assess the effect of varying the parameters of the two
approaches that we investigated: the shuffle neighbourhood
radiusr for the model-based measures and the alternative label
weighting options for the generalised Tanimoto overlap.

The size of perturbation that can be detected in the valida-
tion experiments will depend both on the change in the values
of the measures as a function of misregistration and the mean
error on those values. To quantify this, we define the sensitivity
of a measure as follows.

D(m; d) =
1
σ̄

(
m(d)−m(0)

d

)
, (12)

wherem(d) is the value of the measure for some degree of
deformationd, σ is the mean error in the estimate ofm over
the range.D(m; d) = 1 is the change ind required form(d) to
change by one noise standard error, which indicates the lower
limit of change in misregistrationd which can be detected by
the measure.

We computed the sensitivity for the data shown in Figures 9,
10(a), & 10(b). The averaged sensitivity over the range of
deformations is plotted in Figure 11 for the various measures.
The uncertainties on the measurements of sensitivity can
also be derived and are shown as error bars on Figure 11.

Fig. 9. Overlap measures (with corresponding errorbars) for the brain dataset
as a function of the degree of degradation of registration correspondence.
The various graphs correspond to the various tissue weightings as defined in
section II-B.

In particular, there are two separate sources of uncertainty:
i) errors associated with the finite number of deformation
instantiations and ii) errors associated with the finite number
of synthetic images used in the evaluation of the figure of merit
for NRR. Considering (12), we can evaluate the standard errors
in measured quantitym (for a givend) and σmi, SEm and
SEσm

, analogously to (8) and (10). Using error propagation
the uncertainty on the numerator (T) in (12) is the sum of
standard errors on the two measurements,σ2

T = (SEm(d))2 +
(SEm(0))2 , while the uncertainty on the denominator (B) is
simply σ2

B = SE2
σm

. Using error propagation for a ratio of
variables the uncertainty on the sensitivity becomes:

σD(m;d) = D(m; d)

√(σT

T

)2

+
(σB

B

)2

− 2(
σTB

T
)(

σTB

B
)

(13)
Finally, when sensitivity is aggregated across the defor-

mation range, total uncertainty on the sensitivity, using the
addition error propagation rule again becomes:

σ2
Aggr =

∑
j

σ2
D(m;dj)

+ σ2
D(m;dj+1)

− 2σD(m;dj)σD(m;dj+1).

(14)

D. Comparing Registration Algorithms

NRR algorithms can be divided into two general classes:
pairwiseandgroupwise. Pairwise algorithms register a pair of
images at a time. Registration across a group is then achieved
by repeated applications of the pairwise algorithm. For exam-
ple, all images in the training set can be pairwise-registered
to some chosen reference example (e.g., [12]). However, this
suffers from the general problem that the result obtained
depends on the choice of reference. Refinements of this basic
approach are possible, where the reference is initialised and
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(a) Generalisation (b) Specificity

Fig. 10. Generalisation & Specificity (with corresponding error bars) for the brain dataset as a function of the degree of degradation of the registration
correspondence, and for varying definitions of image distance (varying radius of the shuffle neighbourhood).

updated so as to be representative of the group of images as
a whole. The important point to note, however, is that the
correspondence for a given training image is defined w.r.t.
this reference (which enables consistency of correspondence
to be maintained across the group), and the information used
in determining the correct correspondence is limited to that
contained in that training image and the reference image.

It can be seen that this approach does not take advantage
of the full information in the group of images when defining
correspondence [21]. Making better use of all the available
information is the aim ofgroupwiseregistration algorithms,
where correspondence is determined across the whole set in a
principled manner. One such groupwise method is the Mini-
mum Description Length (MDL) formulation as developed by
the authors [16]. The main idea is that the appearance model
generated from the current correspondence is made an integral
part of the process of further registration, the model being
continually updated as the process of registration proceeds.
The objective function for this groupwise registration is a
description length [22], which considers encrypting the entire
training set as a coded message, the length of the message
in bits being the objective function. Rather than encoding
the raw images, the encoding proceeds by describing each
training set image as a series of shape and texture deformations
applied to some reference. That is, the encoding explicitly uses
the model representation of each image from the appearance
model built using the found correspondence. Thus the full
encoding must also contain the details of the model itself, and
the discrepancy between the actual image and the appearance
model representation of that image.

We expect the groupwise approach to give significantly
better registration results than the repeated pairwise approach.
We compare the performance of two variants of the MDL
groupwise approach and a pairwise method. These three

Fig. 11. Sensitivity of different NRR assessment methods

algorithms present a suitable test of the discrimination ability
of our proposed evaluation framework.

The different NRR algorithms were compared using 2D im-
ages, which allowed large-scale experiments to be performed.
104 T1-weighted 3D MR brain images from a dementia study
were affinely aligned, and a mid-brain slice extracted from
each, at equivalent locations. The set of images was registered
using each of the three registration algorithms. An example
of one of the resulting models is shown in Figure 12. In each
case the specificity and generalisation were computed.

V. RESULTS

A. Overlap, Specificity and Generalisation

Registration quality was measured, for each level of reg-
istration degradation (perturbation), using several variants of
each of the proposed assessment methods:
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• Generalised Tanimoto overlapof the ground-truth data
labels (1) for varying values of the label weightingαl.

• Specificity & Generalisation ((7) & (9), λ = 1), for
varying values of the shuffle neighbourhood radius.

Figure 9 shows the results for the Tanimoto overlap mea-
sure (1). All overlap variants decay monotonically as a func-
tion of misregistration, showing that our perturbed dataset does
indeed have the systematic behaviour we require.

Results for the proposed specificityS (7) and general-
isation G (9) measures as a function of the displacement
magnitude are shown in Figures 10(a) & 10(b). Results are
given for varying values of the shuffle neighbourhood radiusr,
including Euclidean distance,r = 1. Note that Generalisation
and Specificity are in error form, and increase monotonically
with increasing misregistration, for all values of shuffle radius.
The strong qualitative agreement with the results for the
overlap measure demonstrates the validity of the model-based
measures.

B. Sensitivity

Figure 11 compares the sensitivities of the different meth-
ods of evaluating NRR. This shows that specificity is more
sensitive (is able to detect smaller misregistrations) than either
generalisation or the overlap-based approach. Note from the
error bars that these differences are statistically significant.
Maximum sensitivity is achieved with shuffle radii of1.5 and
2.1. Generalisation is shown to be a valid but not particularly
sensitive measure of misregistration.

C. Comparing Registration Algorithms

We compared the results of three registration algorithms as
outlined in Section IV-D:

• Pairwise registration of each training set image to a fixed
reference image, using an image from the training set as
a reference.

• Groupwise registration based on the MDL algorithm
described above, with no constraints on the spatial defor-
mations during the registration process (Groupwise 1).

• Groupwise registration based on the MDL algorithm de-
scribed above, using a statistical shape model to constrain
the allowed spatial deformations between the images
during registration [16] (Groupwise 2).

The results are shown in Figure 13. The specificity obtained
for the two groupwise methods is significantly better than
that obtained using the pairwise approach, implying better
registration, but it is not possible to distinguish between
the two groupwise methods. As might be expected from
the sensitivity results presented above, it is not possible to
distinguish between any of the methods using generalisation.

VI. D ISCUSSION ANDCONCLUSIONS

We have described a model-based approach to evaluating
the results of NRR of a group of images. The most important
advantage of the new method is that it does not require any
ground truth, but depends solely on the registered images
themselves.

We have validated the approach by studying the effect
of perturbing, progressively, the registration of an initially
registered set of images, comparing the results with those
obtained using a ’gold standard’ measure based on the overlap
of ground-truth anatomical labels. We have shown that our
new method provides measures of registration accuracy that
are monotonic functions of the known misregistration, and
that one,specificity, provides a more sensitive measure of
misregistration than the approach based on ground truth.
The model-based approach requires a distance measure in
image space, and we have also demonstrated that the use of
shuffle distance, rather than Euclidean distance, improves the
sensitivity of the approach.

We have further validated the approach and illustrated
its application by performing a comparative evaluation of
the results obtained using three different NRR algorithms,
demonstrating the superiority of a fully-groupwise algorithm
over a repeated pairwise approach.

The experiments were performed in 2D to limit the compu-
tational cost of running a large-scale evaluation for a range
of parameter values and with repeated measurements. The
extension to 3D is, however, trivial, though the calculation
of shuffle distance for 3D images increases the computational
cost significantly.

In the experiments we have reported we used linear ap-
pearance models in the evaluation, but any generative model-
building approach could, in principle, be used. It is important
to emphasise that the method is not restricted to evaluating
model-based NRR algorithms, though we presented results for
one such approach; our model-based measures of registration
accuracy can be applied to any set of non-rigidly registered
images, however they were obtained.

At first sight, the result that one of the model-based
measures is more sensitive than the method based on the
overlap of ground-truth labels seems counter-intuitive. On
further reflection this is not, however, so surprising – since
the model-based approach uses the full intensity image, which
provides a far richer description of local alignment than that
provided by the relatively featureless label images.

Overall, we believe that our approach provides a powerful
approach to evaluating NRR methods, allowing subtle dif-
ferences to be detected without the need for any additional
information. This should prove valuable both in helping to
guide the development of new NRR methodology and in
providing quality control in routine applications of NRR.
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