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Abstract. The need to establish correspondence across groups of images has for long been recognised.
This problem is referred to as non-rigid registration. To enable comparative analysis of images depicting a
similar object, analogous object structures must be identified and a practical way of doing so is by aligning
these structures. The alignment is achieved by treating each image as a deformable object and transforming
it to match another. One image is said to match another when it appears similar, i.e. objects within it
overlap. A framework for a registration scheme comprises a measure of similarity (the objective function),
a method of applying warps and an optimisation regime. Similarity measures assign an evaluative score to
a collection of images that are subjected to transformations. That score reflects how good the alignment is
and when it can no longer improve, convergence (i.e. registration) is assumed.

There is no agreement in the literature on what to consider a powerful family of transformations. It
is also unclear what correctly defines similarity and which images should be compared when measuring
that similarity. Popular methods are based on heuristics and results are difficult to validate. Our work ad-
dresses these issues, not by finding good registration schemes empirically, but by providing a well-founded
approach to the problem. Since registration is known to reduce variation within groups of images, a model
which represents these images will be accordingly affected. By looking at a model, we can derive simi-
larity across the entire set, without the need for a reference. In a sense, the model is used here as a global
similarity measure. Moreover, when models are used in the process of registration, statistical models are
created and variability in dataset is broken down into meaningful ’components’ – the principal modes of
model variation, which highlight attributes of interest. This functionality can aid identification of pathology
symptoms in an autonomous manner. By registering raw sets of images of different groups, models can be
built to find where greater variability lies.

The objective function presented in this work obtains similarity indirectly. It does so by calculating
the complexity of a combined model of shape and intensity, namely by looking at the covariance matrix of

that model. To efficiently evaluate model complexity, we obtained
n∑

i = 1
log(λi + δ) whereλ1<i<n are

then Eigen-values of the covariance matrix whose magnitudes are the greatest. This approximates

det(M + δ) ≡
n∏

i = 1
(λ + δ)i ∝

n∑
i = 1

log(λi + δ) ≡ log(det(M + δ)) (1)

whereM is the covariance matrix under consideration. The algorithm makes the registration purely
model-driven so that no choice of images is needed for comparison. The objective function leads to one
distinct solution without dependence upon individual images. This resolves the recurring issue of having
to select a reference image and treat the problem as if it relies primarily on that one image.

Figure 1. On the left: Example bump data is displayed in its initial form. Each
bump on the surface represents a 1-D vector. On the right: Example of the
early results of registration (200 iterations). The edges of the bumps clearly
begin to align.

To transform images, we chose to employ clamped-plate splines as they address known flaws often
encountered when thin-plate splines and the B-splines are used. The clamped-plate splines prevent any of
the regions in an images from being torn or folded, hence they preserve the existence and integrity of all



image regions. Particularly in the bio-medical domain, visibility of all constituent structures becomes
crucial.

To demonstrate the advantages gained by the model-based approach, we experimented with one dimen-
sional synthetic data where the correct solution is known. Generated data depicted a bump, a half-ellipse,
which varied in its height, width and position (see Figure 1). The sets were stochastically generated with
significant variability that makes the problem challenging. We describe a solution to be good when we ob-
serve proper alignment of the bumps and a resulting registered set that is distinct from any of the original
images. At the same time, we are continuously delivered statistical models (as shown in Figure 3) of vari-
able bumps. A combined model is derived from the shape model and the intensity model. Well-founded
ways exist to visualise and evaluate them and it can be seen that the combined model is refined in the
process, even after as little as 200 iterations.

After only a few minutes, good alignment amongst all bumps was obtained. Sets comprising dozens of
bumps could be successfully handled by the algorithm and statistical model of their appearance emerged
as a by-product of registration. When compared with the known correct solution, the quality of registration
was high. It also successfully surpassed naïve implementations of some conventional algorithms.

Figure 2. On the left: The correct warps that align given data and that same data with the
warps applied. On the right: The value of the objective function as convergence is
approached.

As well as a basic model-based objective function, we investigated the use of subsets to speed up the
process. Subsets are chosen stochastically every 100 iterations, thereby the problem is simplified and the
algorithm becomes more effective in dealing with large sets. It is worth adding that choice of warps was
random at all stages so no data-bias ora-priori knowledge was involved.
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Figure 3. At the top, from left-to-right: Combined, shape, and intensity models of 10 data
instances at the start. The principal modes are shown with up to±2 standard deviations away
from the mean.At the bottom: corresponding models after registration.

The results we have seen thus far suggest that our approach works properly while addressing common
difficulties. It can handle large sets and provide a solution that does not depend on any arbitrary selection
of images. Future work will apply this approach in a real-world problem by treating 2-D images and 3-D
volumes of the human brain.


