
Unification of Appearance Models

and Non-rigid Registration

Abstract

Statistical models of appearance possess the ability to faithfully describe shape
variation, as well as the variation in pixel intensities. Nonetheless, in order for
such models to synthesise valid full appearances, it is essential that landmarks
can be consistently identified in the training sets defining these models. One way
of automatically achieving data landmarking is to establish an overlap across the
training set, much as is already done in image registration.

We contend that the task of registration should seek a globally correct answer,
rather than applying transformations that are reliant on the choice of a single
reference image. The intrinsic power of appearance models, as well as Minimum
Description Length considerations, allow us to define a fully automatic group-wise
non-rigid registration scheme.

Various observations motivated us to investigate the innate bonds between
non-rigid image registration and appearance models. Unification of the two will
be mutually beneficiary and can entail a novel image analysis and alignment
framework.

A complex and highly flexible application we constructed and called AART
(Autonomous Appearance-based Registration Test-bed) provides proof of the
premise above. It benchmarks genuine registration algorithms against other
well-performing pair-wise algorithms and newly-conceived methods to illustrate
the advantages gained by unifying registration and statistical modeling.

1. Introduction

Registration has become a vital pre-processing step in the analysis of bio-medical
data where unpredictable yet restrained variations are inherent. In recent years
there have been attempts to find an alternative to the arbitrary choice of a refer-
ence to carry out registration [1] and such endeavours presently continue. We base
our research on the hypothesis that better paradigms exist for finding solutions
to the registration problem and not only will these solutions be more precise, but
also they will be globally optimal, suggesting that they may represent the correct
answer.

Utilisation of registration methods for the establishment of overlap is made
ever more appealing as it allows the construction of appearance models automat-
ically. Thus far, good appearance model formations had the pre-requisite that
good landmark points needed to be identified in the whole training data, thereby
indicating where analogous regions lie. Following the successful work of Davies [2]
on shape models, it is known that the construction of optimal statistical models
can be conveniently treated as an optimisation problem. An objective function
is defined which aims to find a model that is most concise and still fits all of
its training data. The inference of the “goodness” of a model is assisted by the
Minimum Description Length (MDL) criterion, relying on the assumption that
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simple descriptions are most preferable. In line with this approach, we will define
a distinct way of representing an appearance model and the data encoded using
that model. Once such messages can be composed, we shall seek a message whose
length is minimal. Lower message lengths imply lower variation in the model and
hence increased similarity across the whole data set. The optimisation problem
itself is guided by a reparameterisation that sets the regime by which the shortest
message is to be found.

2. Background

This inter-disciplinary research work is based on numerous areas with vague
overlaps, yet only the three most predominant ones are explained in this section.
The first two, broadly model-driven image analysis and image registration, are the
subjects to be unified and mutually enrich one another, whereas the third which
is MDL is strictly a heuristic technique that has been shown in the past to be
the most powerful methodology for solving the similar problems which had been
posed. The realisation of MDL is essential although alternatives do exist and are
perpetually investigated under AART.

2.1. Active Appearance Models

The task of image analysis, especially in the bio-medical domain, must take
into consideration the variation in shape and appearance of objects. The invariant
presumption is that corresponding objects in all images are of one particular class
so we can typify the contents of the image by training an entity that captures
inter-subject variation as well as atrophies.

Statistical analysis of shapes [3] which obtains a model of deformation goes
back a decade ago. The principles were later extended to sample the variation
in pixel intensities (also commonly referred to as textures) to create a model of
full variation that is able to synthesise full appearances [4] and their successful
application to medical data has been frequently demonstrated [5]. The correlations
between shape and intensity are learned using Principal Component Analysis [6]
where much of the power of these principles lies.

The integrity of models breaks down if correspondences, annotated in the form
of spatial landmarks, are inappropriately identified. Furthermore, the annotation
process involves a preliminary segmentation process which highlights parts of the
data where landmarks can and should be placed. Although this has become a
solved problem in statistical modeling of shape, it is yet difficult to select good
landmarks in images which strive to retain full appearances rather than contours
or surfaces solely. Several attempts have been made to resolve the issue [7, 8,
9], but none was optimal or even quite satisfactory. Alignment has become the
means by which this crucial limitation can be solved and the foundations of image
registration assist in establishing this alignment.

2.2. Image Registration

In the medical domain, one of the more fundamental problems is the require-
ment for the setting of images in a state which makes them appear collectively
similar [10]. This greatly simplifies the analysis of a group of images which bear
common information, as in the case of brain slices fusion or comparison of pa-
tient data, either acquired using different modalities or collected at different time
instances.
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The problem is trivial if the difference is a rigid one – a difference due to
rotation, scale and translation. More realistically, the problem is far more complex
and images are inconsistent (primarily in the case of inter-subject registration)
so affine and non-rigid transformations are required. In the case of non-rigid
registration, transformation is merely unbounded. However, to avoid corruption
and distortion of constituent finer parts of the image, limitations to their freedom
and certain conditions must be met. Clamped-plate splines (CPS), which are
based on Green’s function, have proven to be a useful family of warps, allowing
for highly flexible manipulation of images. Their attributes are reminiscent of
those developed by Lötjönen and Mäkelä [11].

To drive transformation in the right direction and attain convergence, min-
imisation of the difference perceived in the images must be pursued. To measure
discrepancies, or contrariwise, the similarity between two images, mean of squared
differences (MSD) or mutual information (MI) [12] are traditionally used as metrics
although new techniques are perpetually introduced [13].

Overall, the process of registration comprises the transformation of images
followed by similarity measures, where transformations are chosen to iteratively
maximise that similarity. Conventionally, a reference is selected in the process
[14], but our contention is that this need not be the case if an optimal solution is
sought. The technique according to which the registration problem will be solved
is entirely described by the objective function as Section 4 illustrates.

2.3. Minimum Description Length

The notion of“information gained”and homologous uncertainty measures were
initially proposed by Hartley. These were later extended by Shannon, a consid-
erable amount of time before becoming applicable to registration [15]. Shannon
quantified the amount of uncertainty and named it entropy – a very fundamental
term in information theory.

The relevance of this information-theoretical principle to our research stems
from the fact that excess of information that is encapsulated in messages is indeed
measurable. Compression implies data simplification abilities and the less uncer-
tainty is present in the data, the less information will be required to encompass
the redundancy in that data. This therefore can be looked at as a measure of the
simplicity of data, enabling prediction and detection of patterns. Minimum Mes-
sage Length or Minimum Description Length (MDL), as defined by Rissanen [16],
is a useful mechanism for discovering the complexity of some data and following
Occam’s Razor, models that are most concise, should also fit best.

We are then left with the decision of how to construct a message which de-
scribes model quality. In practice, such a description should not only consist of
the model, but it also must contain all the training data with its relationship to
that model.

3. Methodology

A significant step of any registration algorithm involves the transformation of
a set of images which possess commonalities and constrained variations. Unlike
existing registration schemes, where a single reference image is chosen for compar-
ison with each of the other images in a pair-wise manner, we take a global scope
of the problem. We believe that in order to find the global optimum, we ought
to construct an appearance model from all the given images and transform them,
one image at a time, while aspiring to minimise the resulting model’s complexity.



4

This means that instead of a simple reference image, a richer entity of reference
is used to define our target and this entity is dynamic.

It is clear that the model has a representative quality with respect to the images
it encapsulates. Undoubtedly it results in a reference that is based on all images,
generalisable to all images and should be superior to other reference types. For
instance, if a mean reference is used, real data variation is lost and the reference
becomes overly blurry – both problems that appearance models avert. The only
drawback of the approach we take is that appearance models are quite slow to
construct; time is dependent on the size of the set to be registered and yet such
constructions form the very heart of the optimisation. In practical terms it means
that model re-computation is expected to be frequent and for large numbers of
images, the process will slow down considerably. When a multi-scale approach is
applied to the model and the images, this discouraging aspect can be partially
tackled.

4. The Objective Function

Objective functions define the means by which a solution is to be found. As
explained before, efficiency is a reasonable concern so a sophisticated function that
is prudent to construct the model more frequently than necessary must be em-
ployed. Our function needs to drive the search for transformations which increase
similarity across all images. The different nature of the problem and the methods
of solving it convey the ulterior goal somewhat differently than the vast majority
of methods to date, resulting in the formulation below.

Let us denote a transformation function W (•, params) and the construction
of an appearance model to be Model(x1,x2, ..,xn) where xi are the images used
to train that model. We seek a model that is more compact using the following
(simplified) function

Fobj = MDL(Model(x1...,xi..,xn))−MDL(Model(x1...,W (xi, params)..,xn))

where params should be found to minimise this expression for each image vector
xi. A succinct description of our algorithm is as follows:

— Repeat
— For each image vector xi,

— Optimise Fobj by altering the values of params.
— Until convergence.

A combination of different objective functions, e.g. that which we have imple-
mented for MSD, MI, normalised MI, wavelets and probability density functions
alongside the model-based approach, produced encouraging results as well. We
found that the performance of different methods varies depending on the data
and the distance from convergence and AART can autonomously try a mixture
of methods, thereupon hybrid objective functions are introduced. In practice, to

indirectly and quickly evaluate MDL we obtain
n∑

i = 1
log(λi) where λ1<i<n are

the n eigenvalues of the covariance matrix whose magnitudes are the greatest [17].
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5. Experiments

AART was used to carry out all our experiments in a stable environment which
is straightforward to handle. Outputs varied from data files to graphs, images and
videos of several types. Long-running simulations provided the required compara-
tive results which revealed the strengths of the algorithms proposed in this paper.

Fig. 1. AART investigation of the dynamic registration behaviour by displaying
video sequences

The application outputs, in particular the many types of graphs and videos
have been thoroughly analysed by a panel to derive conclusions regarding the
behaviour of the objective functions and perform subsequent experiments accord-
ingly. The exact objective functions and optimisation regimes for all methods are
beyond the scope of this paper.

The following concepts are worthy of further elaboration. Some of these have
never been used before so their potential can be truly comprehended for the first
time.

Probability Density Function (PDF): Such functions describe the vol-
ume of data distributions. More uniform data, as we aspire to achieve
across all images during registration, will result in lower such values. An
exponential PDF was used in the experiments by default although over a
dozen others are available in AART, including a Gaussian one.
Wavelets: As compression [19] is closely related to MDL, these can provide
an accurate estimate of the complexity of data and abundance of patterns
within that data. An extensive group of different wavelets are offered by the
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application and, by default, Daubechy was used in the experiments. Com-
putationally cheaper alternatives to the wavelets are Fourier and Hough
transforms, but these have not yet been incorporated into AART.
Mutual Information: This strand of methods [18, 12] will analyse the
peaks of image histograms. Normalised MI is currently one of the most
robust and widely-used methods for 2-D data.

6. Results

Model-based algorithms result in appearance models whose determinant is by
orders of magnitude lower than that which is measured at the start. The execution
time they impose is inferior to MI, much as we expected all along, but is superior
to that of MSD.

Since many of the statistics we gathered could indicate that we achieved what
we had set our program to do, we intend to apply the same concepts to 2-D and
3-D data in the future. The principles remain unchanged and the only required
extension is that of CPS to a higher-dimensional space – something we have devel-
oped already. The only foreseeable hindrances will then be the speed of execution
and the diligent selection of knot-points for transformation.

Fig. 2. Overlaid plots showing the quality of the appearance model resulting
from each objective function.

For the results in Figure 3, the number of iterations was set to 50. For
single-point transformations, the placement of the control point was random (both
in location and magnitude) and for multi-point transformations the positioning
of points was made random to abstain from data-bias or advantageous a-priori
knowledge. The number of data instances was kept high at 20 in order to allow a
substantial group-wise optimisation to be investigated. Objective functions based
on mutual information remain flat simply due to the continuity of the data and
the fact that it is one-dimensional. The table below shows the different values of
log

∏
λ. λ are the eigenvalues derived from the covariance matrix of the appear-

ance model which was constructed from all 20 data instances. For completeness,
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differentiation is provided for optimisations which reparameterise over all dimen-
sions at once (joint) or do so separately (sequential).

Objective Function Single-point Warp Multi-point Warp
PDF -137.2658 -136.7145

Wavelets -145.4988 -147.7877
Joint Model-based -149.2192 -150.3197

Sequential Model-based -148.7245 -149.9904
MSD -143.0227 -149.0114

Joint MI -142.3415 -136.0651
Sequential MI -142.3712 -136.0651

Joint NMI -142.3154 -142.3068
Sequential NMI -142.3154 -142.3118

Model after MSD -138.6823 -47.0961
Mixed Model/MSD -129.3791 -105.3422

Table 1. Comparison of objective functions.

7. Conclusions and Contributions

We have illustrated not only that group-wise registration based on appearance
model is possible, but also that it surpasses registration that is based purely on a
reference image.

The current algorithms are being interpreted rather than compiled and no
multi-scale approach is yet in use. The extension of the algorithms to 2-D and
3-D would require a long time to run, but remains practical. Compiled imple-
mentations should be available within months as well as heuristic optimisations
that will make run-time more competitive with that of pair-wise approaches. Fur-
thermore, the results have been shown to be better in a global sense and are not
dependent on just one individual image.

Contributions of the work can be subdivided into three aspects:

1. It provides a benchmark environment and results for many methods, including
several new ones.

2. Unprecedented model-based group-wise registration is introduced.
3. Automatic construction of increasingly better appearance model becomes prac-

ticable. Correspondences are obtained using techniques borrowed from image
registration.
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